Funzioni differenziabili

Convergenza uniforme

Definizione 1. Sia K un insieme in \mathbb{R}^d e $G: K \to \mathbb{R}^m$ una funzione. Definiamo

$$||G||_{L^{\infty}(K)} := \sup_{x \in K} |G(x)|.$$

Definizione 2. Sia $K \subset \mathbb{R}^d$ un insieme fissato e sia $F_n : K \to \mathbb{R}^m$ una successione di funzioni. Diciamo che la successione di funzioni F_n converge uniformement alla funzione $F_\infty : K \to \mathbb{R}^m$ se per ogni $\varepsilon > 0$ esiste una costante N > 0 tale che

$$||F_n - F_{\infty}||_{L^{\infty}(K)} \le \varepsilon \quad per \ ogni \quad n \ge N.$$

Definizione 3. Sia $K \subset \mathbb{R}^d$ un insieme fissato e sia $F_r : K \to \mathbb{R}^m$ una famiglia di funzioni che dipende dal parametro r > 0. Diciamo che F_r converge uniformement alla funzione $F_0 : K \to \mathbb{R}^m$ se per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che

$$||F_r - F_0||_{L^{\infty}(K)} \le \varepsilon \quad per \ ogni \quad 0 < r < \delta.$$

CONTINUITÀ

Proposizione 4. Sia $F: \mathbb{R}^d \to \mathbb{R}$ una funzione. Per ogni $x_0 \in \mathbb{R}^d$ consideriamo la famiglia di funzioni $F_r: \overline{B}_1 \to \mathbb{R}$, $F_r(x) = F(x_0 + rx)$.

Dimostrare che sono equivalenti:

- (i) La funzione F è continua in x_0 .
- (ii) Per $r \to 0$, la famiglia $F_r : \overline{B}_1 \to \mathbb{R}$ converge uniformemente in \overline{B}_1 alla funzione costante

$$F_0(x) = F(x_0)$$
 per ogni $x \in \mathbb{R}^d$.

Dimostrazione: Supponiamo che la funzione F NON sia continua in x_0 . Allora esiste una successione di $x_n \to x_0$ tale che

$$|F(x_n) - F(x_0)| > \varepsilon > 0$$
 per ogni n .

Consideriamo r > 0. Allora

$$F(x_n) = F(x_0 + x_n - x_0) = F\left(x_0 + r\frac{x_n - x_0}{r}\right) = F_r\left(\frac{x_n - x_0}{r}\right).$$

Siccome $x_n \to x_0$, per *n* abbastanza grande $\frac{x_n - x_0}{r} \in B_1$. Ma allora,

$$||F_r - F(x_0)||_{L^{\infty}(B_1)} \ge \left|F_r\left(\frac{x_n - x_0}{r}\right) - F(x_0)\right| > \varepsilon.$$

Di conseguenza, F_r NON converge uniformemente in B_1 alla funzione costante $F(x_0)$.

Viceversa, supponiamo che la famiglia F_r NON converga uniformemente in B_1 alla funzione costante $F(x_0)$. Allora, esistono

- una successione $r_n \to 0$,
- ed una successione di punti $x_n \in B_1$,

$$|F_{r_n}(x_n) - F(0)| > \varepsilon$$
 per ogni n .

In particolare,

tali che

$$|F_{r_n}(x_n) - F(x_0)| = |F(x_0 + r_n x_n) - F(x_0)| > \varepsilon.$$

Siccome $x_0 + r_n x_n$ converge a x_0 , abbiamo che F non è continua in x_0 .

DIFFERENZIABILITÀ

Proposizione 5. Sia $F: \mathbb{R}^d \to \mathbb{R}$ una funzione. Per ogni $x_0 \in \mathbb{R}^d$ consideriamo la famiglia di funzioni

$$F_r: \overline{B}_1 \to \mathbb{R} , \quad F_r(x) = \frac{1}{r} \Big(F(x_0 + rx) - F(x_0) \Big) .$$

Dimostrare che sono equivalenti:

(i) Per $r \to 0$, la famiglia $F_r : \overline{B}_1 \to \mathbb{R}$ converge uniformemente in \overline{B}_1 alla funzione lineare

$$L(x) = v \cdot x \quad per \ ogni \quad x \in \mathbb{R}^d,$$

dove $v \in \mathbb{R}^d$ è un vettore fissato.

(ii) Nel punto x_0 la funzione F ha uno sviluppo di Taylor al primo ordine:

$$F(x+x_0) = F(x_0) + v \cdot (x-x_0) + o(|x-x_0|),$$

ovvero

$$\lim_{x \to x_0} \frac{\left| F(x) - (F(x_0) + v \cdot (x - x_0)) \right|}{|x - x_0|} = 0.$$

Dimostrazione: Supponiamo che la famiglia F_r NON converga uniformemente in B_1 alla funzione $L(x) = v \cdot x$. Allora, esistono una successione $r_n \to 0$ ed una successione di punti $x_n \in B_1$, tali che

$$|F_{r_n}(x_n) - v \cdot x_n| > \varepsilon$$
 per ogni n .

In particolare,

$$\varepsilon < \left| \frac{1}{r_n} \Big(F(x_0 + r_n x_n) - F(x_0) \Big) - v \cdot x_n \right|$$

$$= |x_n| \frac{\left| F(x_0 + r_n x_n) - F(x_0) - v \cdot (r_n x_n) \right|}{|r_n x_n|}$$

$$\leq \frac{\left| F(x_0 + r_n x_n) - F(x_0) - v \cdot (r_n x_n) \right|}{|r_n x_n|}.$$

QuindiF non è sviluppabile al primo ordine in x_0 .

Supponiamo che la funzione F NON abbia lo sviluppo di Taylor al primo ordine in x_0 . Allora esiste una successione di $x_n \to x_0$ tale che

$$\frac{\left|F(x_n) - \left(F(x_0) + v \cdot (x_n - x_0)\right)\right|}{|x_n - x_0|} > \varepsilon > 0 \quad \text{per ogni} \quad n.$$

Sia r > 0. Allora

$$F(x_n) - F(x_0) = F(x_0 + x_n - x_0) - F(x_0) = F\left(x_0 + r\frac{x_n - x_0}{r}\right) - F(x_0) = rF_r\left(\frac{x_n - x_0}{r}\right).$$

Si ha quindi

$$\varepsilon < \frac{\left| rF_r\left(\frac{x_n - x_0}{r}\right) - v \cdot (x_n - x_0) \right|}{\left| x_n - x_0 \right|} = \frac{r}{\left| x_n - x_0 \right|} \left| F_r\left(\frac{x_n - x_0}{r}\right) - v \cdot \frac{x_n - x_0}{r} \right|.$$

Scegliendo

$$r_n = 2|x_n - x_0|,$$

abbiamo che

$$\frac{x_n - x_0}{r_n} \in B_1$$
 e $\left| F_r \left(\frac{x_n - x_0}{r_n} \right) - v \cdot \frac{x_n - x_0}{r_n} \right| > \frac{\varepsilon}{2}$ per ogni $n \in \mathbb{N}$.

Di conseguenza, F_r NON converge uniformemente in B_1 alla funzione lineare $L(x) = v \cdot x$.

Funzioni differenziabili - definizione

Definizione 6. Sia $\Omega \subset \mathbb{R}^d$ un aperto $e F : \Omega \to \mathbb{R}$ una funzione. Diciamo che F è differenziabile nel punto $x_0 \in \Omega$ se e solo se esiste un vettore $v \in \mathbb{R}^d$ tale che

$$F(x) = F(x_0) + v \cdot (x - x_0) + o(|x - x_0|).$$

DERIVABILITÀ E GRADIENTE DI UNA FUNZIONE DIFFERENZIABILE

Proposizione 7. Sia $\Omega \subset \mathbb{R}^2$ un aperto $e F : \Omega \to \mathbb{R}$ una funzione differenziabile nel punto $(x_0, y_0) \in \Omega$, ovvero tale che

$$F(x,y) = F(x_0, y_0) + v \cdot (x - x_0, y - y_0) + o(|(x - x_0, y - y_0)|),$$

per un qualche vettore $v = (a, b) \in \mathbb{R}^2$.

Allora F è derivabile in (x_0, y_0) , ovvero esistono le derivate parziali

$$\frac{\partial F}{\partial x}(x_0, y_0) := \lim_{t \to 0} \frac{F(x_0 + t, y_0) - F(x_0, y_0)}{t}$$
$$\frac{\partial F}{\partial y}(x_0, y_0) := \lim_{s \to 0} \frac{F(x_0, y_0 + s) - F(x_0, y_0)}{s}.$$

Inoltre,

$$\frac{\partial F}{\partial x}(x_0,y_0) = a \qquad e \qquad \frac{\partial F}{\partial y}(x_0,y_0) = b,$$

o in altri termini v è il gradiente di F in (x_0, y_0) :

$$v = \nabla F(x_0, y_0).$$

Funzioni non differenziabili

Proposizione 8. Sia $F: \mathbb{R}^d \to \mathbb{R}$ una funzione 1-omogenea e tale che F(0) = 0. Allora F è differenziabile in zero se e solo se

$$F(x) = v \cdot x$$

per un qualche vettore $v \in \mathbb{R}^d$.

Esercizio 9. Trovare una funzione $F: \mathbb{R} \to \mathbb{R}$, 1-omogenea e continua, ma non differenzaibile in zero.

Esercizio 10. Trovare una funzione $F: \mathbb{R}^2 \to \mathbb{R}$, 1-omogenea e continua, ma non differenzaibile in zero.

Esercizio 11. Quali delle funzioni sequenti sono differenziabili in zero?

- (1) $xy + y^2$
- (2) $\sqrt{x^2 + y^2}$
- $(3) \ \frac{xy}{\sqrt{x^2+y^2}}$
- (4) $\frac{x^2y}{\sqrt{x^2+y^2}}$
- $(5) \frac{y^2}{\sqrt{x^2+y^2}}$

Esercizio 12. Sia $P \in \mathbb{R}[x,y]$ un polinomio 2-omogeneo. Dimostrare che la funzione

$$F(x,y) = \frac{P(x,y)}{\sqrt{x^2 + y^2}}$$

è continua, ma non è differenziabile in zero.

Le soluzioni degli esercizi 9-12 si trovano alla pagina successiva.

Soluzioni degli esercizi della pagina precedente

Soluzione Es.9 Per esempio F(x) = |x|.

Soluzione Es.10 Per esempio $F(x,y) = \sqrt{x^2 + y^2}$.

Soluzione Es.11

- (1) La funzione è differenziabile in zero perché $xy+y^2=o(\sqrt{x^2+y^2}).$
- (2) La funzione non è differenziabile in zero perché è 1-omogenea, ma non è lineare. (Perché non è lineare ?)
- (3) La funzione non è differenziabile in zero perché è 1-omogenea, ma non è lineare. (Perché non è lineare ?)
- (4) La funzione è differenziabile in zero perché è $o(\sqrt{x^2+y^2})$.
- (5) (3) La funzione non è differenziabile in zero perché è 1-omogenea, ma non è lineare. (Perché non è lineare ?)

Soluzione Es.12

- \bullet Verificare che la funzione F è 1-omogenea.
- Mostrare che se $P(x,y) = (ax + by)\sqrt{x^2 + y^2}$, allora P(x,y) = (ax + by)(cx + dy).
- Dedurre che $(cx + dy)^2 = x^2 + y^2$.
- Mostrare che l'uguaglianza del punto precedente non è possibile.

Funzioni differenziabili - esercizi 1

Esercizio 13. Consideriamo la funzione $F: \mathbb{R}^2 \to \mathbb{R}$

$$F(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & se\ (x,y) \neq (0,0) \\ 0 & se\ (x,y) = (0,0) \end{cases}$$

Quali delle affermazioni seguenti sono vere?

- (a) F è derivabile in zero.
- (b) $\nabla F(0,0) = (0,0)$.
- (c) Il gradiente in zero non è definito.
- (d) La funzione è differenziabile in zero.
- (e) Per ogni $(x,y) \in \mathbb{R}^2$, la funzione

$$t \mapsto F(tx, ty)$$

è derivabile in zero.

(f) F è continua in zero.

Esercizio 14. Consideriamo la funzione $F: \mathbb{R}^2 \to \mathbb{R}$

$$F(x,y) = \begin{cases} \frac{x|y|}{\sqrt{x^2 + y^2}} & se\ (x,y) \neq (0,0) \\ 0 & se\ (x,y) = (0,0) \end{cases}$$

Quali delle affermazioni seguenti sono vere?

- (a) F è derivabile in zero.
- (b) $\nabla F(0,0) = (0,0)$.
- (c) Il gradiente in zero non è definito.
- (d) La funzione è differenziabile in zero.
- (e) Per ogni $(x,y) \in \mathbb{R}^2$, la funzione

$$t \mapsto F(tx, ty)$$

è derivabile in zero.

(f) F è continua in zero.

Esercizio 15. Consideriamo la funzione $F: \mathbb{R}^2 \to \mathbb{R}$

$$F(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & se\ (x,y) \neq (0,0) \\ 0 & se\ (x,y) = (0,0) \end{cases}$$

Quali delle affermazioni seguenti sono vere?

(a) F è derivabile in zero.

- (b) $\nabla F(0,0) = (0,0)$.
- (c) Il gradiente in zero non è definito.
- (d) La funzione è differenziabile in zero.
- (e) F è continua in zero.
- (f) $F \ \dot{e} \ limitata$.

Esercizio 16. Consideriamo la funzione $F: \mathbb{R}^2 \to \mathbb{R}$

$$F(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & se\ (x,y) \neq (0,0) \\ 0 & se\ (x,y) = (0,0) \end{cases}$$

Quali delle affermazioni seguenti sono vere?

- (a) F è derivabile in zero.
- (b) $\nabla F(0,0) = (0,0)$.
- (c) Il gradiente in zero non è definito.
- (d) La funzione è differenziabile in zero.
- (e) F è continua in zero.
- (f) F è limitata.

Esercizio 17. Consideriamo la funzione $F: \mathbb{R}^2 \to \mathbb{R}$

$$F(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & se\ (x,y) \neq (0,0) \\ 0 & se\ (x,y) = (0,0) \end{cases}$$

Quali delle affermazioni seguenti sono vere?

- (a) F è derivabile in zero.
- (b) $\nabla F(0,0) = (0,0)$.
- (c) Il gradiente in zero non è definito.
- (d) La funzione è differenziabile in zero.
- (e) F è continua in zero.
- (f) F è limitata.

Esercizio 18. Consideriamo la funzione $F: \mathbb{R}^2 \to \mathbb{R}$

$$F(x,y) = \begin{cases} \frac{x^2y^2}{x^2 + y^2} & se\ (x,y) \neq (0,0) \\ 0 & se\ (x,y) = (0,0) \end{cases}$$

Quali delle affermazioni sequenti sono vere?

(a) F è derivabile in zero.

- (b) $\nabla F(0,0) = (0,0)$.
- (c) Il gradiente in zero non è definito.
- (d) La funzione è differenziabile in zero.
- (e) F è continua in zero.
- (f) F è limitata.

Esercizio 19. Consideriamo la funzione $F: \mathbb{R}^2 \to \mathbb{R}$

$$F(x,y) = \begin{cases} \frac{xy^2 - yx^2}{x^2 + y^2} & se\ (x,y) \neq (0,0) \\ 0 & se\ (x,y) = (0,0) \end{cases}$$

Quali delle affermazioni seguenti sono vere?

- (a) F è derivabile in zero.
- (b) F è differenziabile in zero.
- (c) $F \ \dot{e} \ di \ classe \ C^1 \ in \ \mathbb{R}^2$
- (d) $F \ \dot{e} \ di \ classe \ C^2 \ in \ \mathbb{R}^2$
- (e) $\partial_{xy}F(0,0) = \partial_{yx}F(0,0)$.

Esercizio 20. Consideriamo la funzione $F: \mathbb{R}^2 \to \mathbb{R}$

$$F(x,y) = \begin{cases} \frac{y^2 \sqrt{|x|}}{x^2 + y^2} & se\ (x,y) \neq (0,0) \\ 0 & se\ (x,y) = (0,0) \end{cases}$$

Quali delle affermazioni sequenti sono vere?

- (a) F è derivabile in zero.
- (b) $\nabla F(0,0) = (0,0)$.
- (c) Il gradiente in zero non è definito.
- (d) La funzione è differenziabile in zero.
- (e) F è continua in zero.
- (f) $F \ \dot{e} \ limitata \ in \ B_1$.

Funzioni differenziabili - esercizi 2

La seguente proposizione potrebbe essere utile negli esercizi seguenti.

Proposizione 21. Siano $F: \mathbb{R}^d \to \mathbb{R}$ e $G: \mathbb{R}^d \to \mathbb{R}$ due funzioni tali che

$$F(x) - G(x) = o(|x|).$$

Dimostrare che F è differenziabile in zero se e solo se lo è G.

Esercizio 22. Consideriamo la funzione $F: \mathbb{R}^2 \to \mathbb{R}$

$$F(x,y) = \begin{cases} \frac{y^2 \sin x}{x^2 + y^2} & se\ (x,y) \neq (0,0) \\ 0 & se\ (x,y) = (0,0) \end{cases}$$

Quali delle affermazioni seguenti sono vere?

- (a) F è derivabile in zero.
- (b) $\nabla F(0,0) = (0,0)$.
- (c) Il gradiente in zero non è definito.
- (d) La funzione è differenziabile in zero.
- (e) F è continua in zero.
- (f) F è limitata.

Esercizio 23. Consideriamo la funzione $F: \mathbb{R}^2 \to \mathbb{R}$

$$F(x,y) = \begin{cases} \frac{\sin(xy)}{x^2 + y^2} & se\ (x,y) \neq (0,0) \\ 0 & se\ (x,y) = (0,0) \end{cases}$$

Quali delle affermazioni seguenti sono vere?

- (a) F è derivabile in zero.
- (b) $\nabla F(0,0) = (0,0)$.
- (c) Il gradiente in zero non è definito.
- (d) La funzione è differenziabile in zero.
- (e) F è continua in zero.
- (f) F è limitata.

Esercizio 24. Consideriamo la funzione $F: \mathbb{R}^2 \to \mathbb{R}$

$$F(x,y) = \begin{cases} \frac{\sin(xy^2)}{\sqrt{x^2 + y^2}} & se\ (x,y) \neq (0,0) \\ 0 & se\ (x,y) = (0,0) \end{cases}$$

Quali delle affermazioni seguenti sono vere?

- (a) F è derivabile in zero.
- (b) $\nabla F(0,0) = (0,0)$.
- (c) Il gradiente in zero non è definito.
- (d) La funzione è differenziabile in zero.
- (e) F è continua in zero.
- (f) F è limitata.

Funzioni differenziabili - esercizi 3

Esercizio 25. Consideriamo la funzione $F: \mathbb{R}^2 \to \mathbb{R}$

$$F(x,y) = \begin{cases} \frac{x^2y^2}{x^2 + y^4} & se\ (x,y) \neq (0,0) \\ 0 & se\ (x,y) = (0,0) \end{cases}$$

Quali delle affermazioni seguenti sono vere?

- (a) F è derivabile in zero.
- (b) $\nabla F(0,0) = (0,0)$.
- (c) Il gradiente in zero non è definito.
- (d) F è differenziabile in zero.
- (e) F è continua in zero.

Esercizio 26. Consideriamo la funzione $F: \mathbb{R}^2 \to \mathbb{R}$

$$F(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^4} & se\ (x,y) \neq (0,0) \\ 0 & se\ (x,y) = (0,0) \end{cases}$$

Quali delle affermazioni sequenti sono vere?

- (a) F è derivabile in zero.
- (b) $\nabla F(0,0) = (0,0)$.
- (c) Il gradiente in zero non è definito.
- (d) F è differenziabile in zero.
- (e) F è continua in zero.

Esercizio 27. Consideriamo la funzione $F: \mathbb{R}^2 \to \mathbb{R}$

$$F(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^4} & se\ (x,y) \neq (0,0) \\ 0 & se\ (x,y) = (0,0) \end{cases}$$

Quali delle affermazioni seguenti sono vere?

- (a) F è derivabile in zero.
- (b) $\nabla F(0,0) = (0,0)$.
- (c) Il gradiente in zero non è definito.
- (d) F è differenziabile in zero.
- (e) F è continua in zero.